The common theme of our research group, Complex Fluids Laboratory, is to understand the flow behavior of complex fluids; examples include foams, emulsions and fluids containing nanoparticles of different sizes, shapes, surface chemistry, and flexibility. The ultimate goal is to develop novel, scalable techniques for processing complex fluids into multifunctional, high performance articles (e.g., films, fibers, and polymer composites). We are particularly interested in the following areas:


Area I: Developing Next-Generation Inkjet and 3D Printing for Additive Manufacturing

Objectives: (1) To understand how fluid properties influence printing performance; (2) To improve the reliability and push the resolution limit of printing

Relevant publications: (1) B. Bognet, Y. Guo, A. W. K. Ma. Controlling system components with a sound card: An affordable inkjet fluid testing platform. Rev. Sci. Instrum., 87, 015101 (2016). (2) Guo, H. Patanwala, B. H. Bognet, A. W. K. Ma. The physics of inkjet and inkjet-based 3D printing. Rapid Prototyping, 23(3), 562 – 576 (2017). (3) H. Patanwala, D. Hong, S. R. Vora, B. Bognet, A. W. K. Ma, The microstructure and mechanical properties of 3D printed carbon nanotube-polylactic acid composites. Polym. Compos. doi:10.1002/pc.24494.

Area II: The Rheology and Microstructure of Nanoparticles at Fluid-Fluid Interfaces

Objectives: (1) To understand how the size and shape of (nano)particles affect their behavior at a fluid-fluid interface; (2) To characterize and model the interfacial microstructure and rheology as an interface is deformed.

Mapping out the global strain field as a carbon nanotube-decorated air-water interface is compressed. [J. Colloid Interface Sci., 509, 94-101 (2018)]

Relevant publications: (1) S. R. Vora, B. Bognet, H. S. Patanwala, F. Chinesta, A. W. K. Ma. Surface pressure and microstructure of carbon nanotubes at an air–water interface. Langmuir, 31(16), 4663 – 4672 (2015). (2) S. R. Vora; B. Bognet; H. S. Patanwala; C. Young; S-Y. Chang; V. Daux, A. W. K. Ma, Global strain field mapping of a particle-laden interface using digital image correlation. J. Colloid Interface Sci., 509, 94-101 (2018).

Area III: Flow Dynamics and Transport of Nanoparticles in Biological Fluids

Objective: To understand the flow dynamics of nanoparticles in blood flows and the consequent margination effects, whereby nanoparticles migrate towards the blood vessel wall during blood flows

Relevant publications: (1) E. Carboni, K. Tschudi, J. Nam, X. Lu, A. W. K. Ma. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech, 15(3), 762 – 771 (2014). (2) E. J. Carboni, B. H. Bognet, G. M. Bouchillon, A. L. Kadilak, L. M. Shor, M. D. Ward, A. W. K. Ma. Direct tracking of particles and quantification of margination in blood flow. Biophysical Journal, 111(7), 1487–1495, 2016.

Area IV: Phase Behavior and Rheology of Fluids Containing Nanoparticles

Objective: To understand: (1) phase behavior and rheology of different types of nanoparticles and their mixtures and (2) interplay between different length and time scales.

Phase behavior and rheology of carbon nanotube (CNT) suspensions

Relevant publications: (1) A. W. K. Ma, S. Vora. Understanding the dispersion and rheology of carbon nanotube suspensions, in W.I. Milne, M. Cole, S. Mitura (eds.) Carbon Nanotechnology, One Central Press, Manchester, UK (2016). (2) D. E. Tsentalovich, A. W. K. Ma, J. A. Lee, N. Behabtu, E. A. Bengio, A. Choi, J. Hao, Y. Luo, R. J. Headrick, M. J. Green, Y. Talmon, M. Pasquali. Relationship of extensional viscosity and liquid crystalline transition to length distribution in carbon nanotube solutions. Macromolecules, 49(2), 681 –689 (2016). (3) A. W. K. Ma, J. Nam, N. Behabtu, F. Mirri, C. C. Young, B. Dan, D. Tsentalovich, M. Majumder, L. Song, Y. Cohen, P. M. Ajayan, M. Pasquali. Scalable formation of carbon nanotube films containing highly aligned whiskerlike crystallites. Ind. Eng. Chem. Res., 52, 8705 – 8713 (2013). (4) N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. K. Ma, E. A. Bengio, R. F. ter Waarbeek, J. J. De Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, M. Pasquali. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 339, 182 – 186 (2013). See full publication list.